Characteristics of PET, Antistatic PVC, Acrylic and Polycarbonat

Provides four types of clear plates with superior transparency. In addition to the standard grade, antistatic grade with antistatic function is - PET

It has approx. 4 times stronger impact resistance than that of acylic. Moreover iti s an environment-friendly material, which generates no poisonous gas when burned. It is also cost effective. Antistatic PVC
Excels in chemical resistance and flame resistance, and superior in cost-effectiveness among anti-static materials.
Acrylic
Excels in transparency, weather resistance and machinability, and is used widely for indoor and outcoor purposes, such as covers for industrial machinery, art display cases and signooards. Polycarbonate

Item			$\begin{gathered} \text { JIS } \\ \text { Testing } \\ \text { Method } \end{gathered}$	Unit	Representative Products														
			PET PVC Standard Antistatic Antistatic			$\begin{array}{\|c\|} \hline \text { Acrylic (Cast) } \\ \hline \text { Standard Antistatic } \\ \hline \end{array}$		Acrylic Economy (Extrusion)			Polycarbonate								
			Stan		ndard			Antistatic	Sta	Antistatic	Abrsioressis								
			P. 957		P. 961	P. 963		P. 967			P. 969								
			$\begin{array}{\|l\|} \text { PYA } \\ \text { PYBA } \\ \text { PYDA } \end{array}$		$\begin{array}{\|l\|l\|} \text { PYTA } \\ \text { PYBTA } \end{array}$		$\begin{gathered} \text { ACA } \\ \text { ACBA } \\ \text { ACDA } \end{gathered}$	$\begin{aligned} & \text { ACTA } \\ & \text { ACBTA } \end{aligned}$	ACAE	ACBAE	ACTAE ACBTAE	$\begin{array}{\|c\|} \hline \text { PCTA } \\ \text { PCTBA } \\ \text { PCTGA } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { PCTTA } \\ \text { PCTBTA } \end{array}$	PCTS					
								\%	$\begin{array}{\|l\|} \hline \text { PYAA:87 } \\ \text { PYBA:28 } \\ \text { PYDA:45 } \end{array}$	$8 \text { PYTA:80 }$	$0 \begin{aligned} & 0 \text { ENBT:80 } \\ & \hline \text { ENBT: } 29 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { ACA:93 } \\ \text { ACBA:25 } \\ \text { ACDA:43 } \\ \hline \end{array}$	$\begin{array}{c\|c} & \text { ACTA:79 } \\ \hline \text { ACBTA:32 } \end{array}$	ACAE: 2	ACBAE	$4 \text { ACCTAE: }{ }^{\text {ACB7 }: 25}$	$\begin{aligned} & \text { PCTA:90 } \\ & \text { PCTBA:35 } \\ & \text { PCTGA:33 } \end{aligned}$	$\begin{aligned} & \text { P PCTTA:86 } \\ & \hline \end{aligned}$	PCTSP
Tensile Strength			K-7113	MPa $\left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\}$	$\begin{gathered} 62 \\ \{630\} \end{gathered}$	$\begin{gathered} 52 \\ \{530\} \end{gathered}$	$\begin{gathered} 63 \\ \{640\} \end{gathered}$	$\begin{gathered} 75 \\ \{760\} \end{gathered}$	$\begin{gathered} 75 \\ \{760\} \end{gathered}$	$\begin{gathered} 67 \\ \{682\} \end{gathered}$	$\begin{gathered} \hline 76 \\ \{774\} \end{gathered}$	$\begin{gathered} 73 \\ \{754\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$				
${ }_{4}^{4}$ Elongation*			113	\%	15		50	2~7	5	4	5	5	83	83	83				
景Bending Strength			k-7203	$\begin{gathered} \mathrm{MPa} \\ \left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\} \end{gathered}$	$\begin{gathered} 83 \\ \{850\} \end{gathered}$	$\begin{gathered} 71 \\ \{730\} \end{gathered}$	$\begin{gathered} 98 \\ \{1000\} \end{gathered}$	$\begin{gathered} 117 \\ \{1200\} \end{gathered}$	$\begin{gathered} 106 \\ \{1080\} \end{gathered}$	111	$\begin{gathered} 125 \\ \{1274\} \end{gathered}$	$\begin{gathered} 122 \\ \{1244\} \end{gathered}$	$\begin{gathered} 90 \\ \{918\} \end{gathered}$	$\begin{gathered} 90 \\ \{918\} \end{gathered}$	$\begin{gathered} 93 \\ \{948\} \end{gathered}$				
. Fex Flexural Modulus			203	MPa	2.4×10^{3}	2.0×10^{3}	3.4×10^{3}	3.2×10^{3}	3.3×10^{3}	3400	3500	3300	2300	2300	2300				
	Compression Strength	Yield Point	K-7181	$\begin{gathered} \mathrm{MPa} \\ \left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\} \end{gathered}$		$\begin{gathered} 60 \\ \{610\} \end{gathered}$	$\begin{gathered} 83 \\ \{850\} \end{gathered}$	$\begin{gathered} 124 \\ \{1270\} \end{gathered}$		$\begin{gathered} 120 \\ \{1200\} \end{gathered}$			$\begin{gathered} 78 \\ \{795\} \end{gathered}$	$\begin{gathered} 78 \\ \{795\} \end{gathered}$					
	Izod Impact Str	ength	K-7110	$\mathrm{kJ} / \mathrm{m}^{2}$	10		2.9	2.7		2.5	1.5	2	15	15					
	Rockwell Harchess	M Scale			59	46		100	100	100	99	97	67	70					
	Continuous Use			${ }^{\circ} \mathrm{C}$	-15~55	-15~55	$-30 \sim 60$	-30~80	-30~80	-30~70	-30~70	-30~60	-30~100	-30~100	-30~100				
	Oifition ena Uluder lax 0.45 MPa			K-7191	${ }^{\circ} \mathrm{C}$	70	69		100	85	90	110	92	135	135	135			
				K-7140	${ }^{\circ} \mathrm{C}^{-1}$	6.8×10^{-5}	7.5×10^{-5}	7.0x10.5	7.0×10^{-5}	5.9×10^{-5}	7.0x10.5	7.0×10^{-5}	7.0x10.5	6.5×10^{-5}	5.2×10^{-5}	6.5×10^{-5}			
Til Thermal Conductivity				W/m			0.16	0.21		0.21	0.21		0.24						
Specific Heat				$\mathrm{J} / \mathrm{g} \cdot \mathrm{K}$	1.3	1.35	1.12	1.46	1.46	1.46	1.47	1.5	1.3	1.2					
Surface Resistivity			K-6911	Ω	$>10^{10}$	$10^{6} \sim 10^{8}$	$10^{7} \sim 10^{8}$	$>10^{15}$	$10^{6} \sim 10^{8}$	$>10^{15}$	$>10^{16}$	$10^{7} \sim 10^{8}$	$>2.0 \times 10^{16}$	$10^{6} \sim 10^{8}$	>2.0×10				
Specific Volume Resistivity			K-6911	$\Omega \cdot \mathrm{cm}$	$>10^{11}$	$>10^{17}$		$>10^{15}$	$>10^{17}$	$>10^{15}$	$>10^{15}$	$>10^{15}$	$>10^{17}$	$>10^{17}$	$>10{ }^{17}$				
Insulation Breakdown Votage			K-6911	kV/mm				20		20	20		20	-	20				
Dielectric Constant $10^{\circ} \mathrm{Hz}$			K-6911		3.2			3.2	2.9	3.1	4		3	3	3				
픂 Dissipation Factor 10 $0^{\text {¢Hz }}$			K-6911	-		-	-	0.06	0.032	0.06	0.06	-	0.009	0.06	-				
Specific Gravity				-	1.27	1.27	1.4	1.2	1.2	1.2	1.19	1.19	1.2	1.2	1.2				
Water Absorption Ratio			K-7209	\%			0.03	0.4	0.18	0.4	0.3	0.4	0.24	0.15					
Flame Resistance							Ssitutarasiling	\times	\times					-					
흥 Chemical Resistance		0il			\bigcirc	\times	\bigcirc												
		Acid			\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$x \sim \Delta$	\triangle	\times	\triangle				
		Alkali			$\times \sim \Delta$	$\times \sim \Delta$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times				
		Oganics Suvent	-		\times	\times	$x \sim \Delta$	$x \sim \Delta$	$x \sim \Delta$	$\times \sim \triangle$	$\times \sim \Delta$	$\times \sim \triangle$	\times	\times	\times				

*Values of elongation of polycarbonate and PET are \% values measured by JIS $\mathrm{K}-7162-11 / 50$.

Characteristics of Acrylic Cast Plates and Extruded Plate

As for Acrylic Plates, cast plates made by cell-cast method and extruded plates are available.
Cast plates have better heat resistance and stronger mechanical strength than extruded plates. Extruded plates are more inexpensive than cast plates.

When exrucued plates have contact with vaporizing iqquid such as methanol and methylene chloride after they are therma-processed such as laser machining, they may have cracks. Also, extruded plates may have deflection at high temperature.

Engineered Plastics Guide

Line-ups and Characteristics of Engineered Plastics

Page	Material	Soaror	Grade	Solor		Properities					Features
							be		mamm		
P.993	$n \mathrm{CN} / \mathrm{mon}^{\circ}$		Sandard	Bue	м9001	suldion	$\begin{aligned} & 40^{40} 0^{\circ} 0^{\circ} \end{aligned}$	\triangle	\bigcirc	\bigcirc	[Features]MC Nylon ${ }^{\oplus}$ of Nippon Polypenco Ltd. is the most general material in engineered plastics and used for various ins purposes. Excels in mechanical strength and abrasion resistance, but not in dimension stability due to high water absorption AppearanceJStripes on upper and lower surfaces of materials are developed from production process. Colors may have Machinability]Machinability is good but harder to physical properties. ity]Machinability is good but harder to machine than that of Polyacetal due to special stickiness.
			Stantard	wory	mgoonc	noultam	${ }^{40} 0^{\circ} \mathrm{C}$	\triangle	-	\bigcirc	
			Sliting	Pruple	мстззн	nuldion	$\begin{aligned} & 40^{40} 0^{\circ} \mathrm{C} \end{aligned}$	\triangle	-	\bigcirc	Features]Dynamic Friction Coefficient is low. Excels in sliding properties, abrasion resistance and mechanical strength. the special additive [Machinability]Same as Standard Type. ood oils and fats.
			Stigh		mc6025	nslabion		\triangle	\bigcirc	-	FFeaturesuluper temperature imintit shigher than that of Standard Type and excels in mechanical strength.
			${ }_{\text {Weater }}^{\substack{\text { Wesisfance }}}$	${ }_{\text {and }}^{\substack{\text { bax }}}$	mc801	atato		\triangle	-	\bigcirc	Features]Excels in weather resistance and abrasion resistance. Can be used outdoors over a long period of time Appearance\|Stripes on upper and lower surfaces of materials are developed from production process. [Machinability]Same as Standard Type.
				Back	MC501 COR2	maditie		\triangle	\triangle	-	
			${ }_{\substack{\text { conculurivy } \\ \text { coff }}}^{\text {a }}$	Back	мс501 1086	Anistadic		\triangle	\triangle	\bigcirc	
			concols	Back	mC501 Cobg	Staic		\triangle	\bigcirc	\bigcirc	
P.97	Folyatal		Standard	White	PoM Duraoon	suldian	$\begin{aligned} & -45^{5} \mathrm{C} 0 \\ & 95^{\circ} \mathrm{C} \end{aligned}$	\bigcirc	\triangle	\bigcirc	FreaturesSGeneral Engineered Plastics for various industrial purposes. Equal to Duracone. Has low water absorption and sistance. Appearancelupper and lower surfaces look and feel smooth. Wed line (resis flow makk) is develiped from production [Machinability]Good machinability.
			dard	Back	Pom Dura	Sulam	$.45^{\circ} \mathrm{C}$	\bigcirc	\triangle	-	
			Antistaic	ocher		Mansatic		\triangle	\bigcirc	-	Features $\sqrt{N o}$-carbon antistatic material is used and effective for antistatic. [Appearance]Unilike Standard Type, weld line (resin flow mark) is not highly visible. [Machinability]Same as Standard Type.
P.1001	Bakelle		$\underset{\substack{\text { Paper } \\ \text { Bakefite }}}{\text { a }}$			nnuidion	$\begin{array}{\|l\|} \hline-500 \\ 1000 \\ 1000 \end{array}$	\bigcirc	$\begin{aligned} & x \\ & \vdots \\ & \Delta \\ & \Delta \end{aligned}$		[Features] General material for various purposes such a si insulation and heat resistance. Paper-based materials are more daker due to oxidation over time. However. it does not atfect properties. Paper--based black color does not [Machinabilityly cood machinability but dust scateres when machined.
			${ }_{\substack{\text { Paper }}}^{\substack{\text { Papeftere }}}$	Back	Laminated pheno	alian	$.50^{\circ} \mathrm{C}$	\bigcirc	${ }_{\sim}^{\times}$	${ }_{2}$	
				${ }_{\text {Matal }}^{\substack{\text { char } \\ \text { cour }}}$		nsuditon	$\begin{array}{\|l\|l\|} \hline-0^{\circ} \mathrm{Coc} \\ 10^{\circ} \mathrm{C} \end{array}$	\bigcirc	$\begin{aligned} & x \\ & \vdots \\ & \Delta \end{aligned}$	$\begin{aligned} & x \\ & 1 \\ & \Delta \end{aligned}$	[Features]General material for various purposes such as insulation and heat resistance. Cloth-based materials have higher strength than paper-based materials. [Appearance]Upper and lower suf aces are smooth and have grains [Machinability]Good machinability but dust scatters when machined Cloth-based materials have less machinability than paper-based materials due to lamination.
P.1007	${ }_{\substack{\text { cpoxy } \\ \text { Glass }}}$		Standard	Green	Glass Fpoxy	nsuldam		O	$\begin{aligned} & x \\ & \vdots \\ & \Delta \end{aligned}$	-	[Features]Excels in heat resistance, heat insulation and electrical insulation. s appear whitish [Machinability]Because made of laminated glass fiber and epoxy resin, drilling or cutting in the direction of lamination may cause cracks
				Back		mandatic		Ó	¢	\times \times \vdots Δ Δ	Features Excels in heat restance, heat insulation and antistatic effec [Appearance]Unlike Standard Type, upper and lower surfaces are not glossy but smooth. [Machinability]Same as Standard Type.
P. 1009			dard	${ }_{\text {wing }}^{\text {mid }}$		nouliam	$\begin{aligned} & 10^{10 c} \\ & 80^{\circ} \mathrm{C} \end{aligned}$	\triangle	-	-	Features]Standard:Has low specific gravity and is lightweight. Excels in abrasion resistance and sliding properties. New Electrical Conductivity:Excels in sliding property and abrasion resistance at ambient temperature with low load. Also excels in conductivity. Appearance Clear white for Standard Type. Pullout marks are left at the extruded direction. Surfaces feel smooth Machinability]Hard to machine as they are soft. Be careful of the way to fix [aution]Storing them against the wall causes warpage. Be sure to lay them out flat. Do not use Conductive Type as heating elements or electric parts such as contact points or terminals.
				Black		cmaditie	$\begin{gathered} 100^{-0} \mathrm{C} \\ 80^{\circ} \mathrm{C} \end{gathered}$	\triangle	\bigcirc	-	
P. 1011	Fluorine		Stantard	White		nsuldion	$\left.\begin{array}{\|l\|l\|l\|l\|l} \hline 20^{\circ} \mathrm{C} \end{array} \right\rvert\,$	${ }_{1}$	\bigcirc	-	[Features]Excels in heat resistance and chemical resistance. Fluororesin is Polytetrafluoroethylene resin (equal to Teflone), [Appearance]Upper and lower surfaces look and feel very smooth. [Machinability]Hard to machine as they are soft and become swoll [Caution]Storing them against the wall causes warpage. Be sure to lay them out flat.

About Shape / Dimension Change of Resin
Resin, unlike metals, can be easily distorted, expanded or contracted due to temperature and humidity.
See note below for designing.
See note below for designing.

120imension Change

Engineered Plastic Characteristics I

General-purpose Engineered Plastic Plates

Characteristics of MC Nylon${ }^{n}$, Polyacetal, Ultra High-Molecular-weight Polyethylene, Fluororesin, PEEK, PPS, Free-cutting Resin, PET, PBT and ABS MISUMI's general-purpose Engineered Plastic Plates have superior properties of lightweight, noise reduction and corrosion resistance and can be used as a replacement for metal plates.
Selectable from nine types of materials and several grades for various purposes.
MC Nylon ${ }^{\ominus}$: Having better abrasion resistance than that of polyacetal plates, MC nylon is generally used for slide guide plates. The product lineup are as follows: Sliding Grade with highly-improved sliding performance; High Strength Grade with excellent strength; three types of Conductive Grade effective for antistatic purposes; and Weather Resistance Grade superior in strength deterioration resistance
Polyacetal :Widely used in wheels, rollers and gears, because of its excellent mechanical strength. Antistatic Grade is also available.
-Ultra High-Molecular-weight Polyethylene :It excels in abrasion resistance and sliding properties, and is used for carrier rollers and guide rails. In addition to Standard Type, Conductive Grade for antistatic is also available.

[^0]
-Fluororesin

 propertSuper Engineered Plastic with high heat and chemical resistance. It excels in mechanical characteristics under high temperature. In addition to Standard Type, Conductive Grade for antistatic is also available.
It excels in heat resistance, rigidity, flame resistance and dimension stability. It also excels in chemical resistance at ambien temperature and is used for parts of semiconductor and liquid crystal manufacturing equipment and inspection device.
ree-citing Resin (Unilate9: It excels in insulation, low water absorption and rigidity, and is easy to machine and cut.

- Antistatic PET : Excellent in workability and dimensional stability, and is used as fixtures for semiconductor components / electronic components. Various opions of thick plate are offered PBT ABS
: It excels in insulation, machinability, low water absorption and long term heat stability, and is used for auto electric parts. : Excels in machinability and coating. Widely used as a material with which coating on plastic body is enabled.

Listed values are for reference, not guaranteed.

[^0]: Comply with Food Sanitation Laws (MC Nylon, Standa
 QListed values are for reference, not guaranteed.

