Characteristics of PET, Antistatic PVC, Acrylic and Polycarbonat

Provides four types of clear plates with superior transparency. In addition to the standard grade, antistatic grade with antistatic function is - PET

It has approx. 4 times stronger impact resistance than that of acylic. Moreover iti s an environment-friendly material, which generates no poisonous gas when burned. It is also cost effective. Antistatic PVC
Excels in chemical resistance and flame resistance, and superior in cost-effectiveness among anti-static materials.
Acrylic
Excels in transparency, weather resistance and machinability, and is used widely for indoor and outcoor purposes, such as covers for industrial machinery, art display cases and signooards. Polycarbonate

Item			$\begin{gathered} \text { JIS } \\ \text { Testing } \\ \text { Method } \end{gathered}$	Unit	Representative Products														
			PET PVC Standard Antistatic Antistatic			$\begin{array}{\|c\|} \hline \text { Acrylic (Cast) } \\ \hline \text { Standard Antistatic } \\ \hline \end{array}$		Acrylic Economy (Extrusion)			Polycarbonate								
			Stan		ndard			Antistatic	Sta	Antistatic	Abraioress								
			P. 957		P. 961	P. 963		P. 967			P. 969								
			$\begin{array}{\|l\|} \text { PYA } \\ \text { PYBA } \\ \text { PYDA } \end{array}$		$\begin{array}{\|l\|l\|} \text { PYTA } \\ \text { PYBTA } \end{array}$		$\begin{gathered} \text { ACA } \\ \text { ACBA } \\ \text { ACDA } \end{gathered}$	$\begin{aligned} & \text { ACTA } \\ & \text { ACBTA } \end{aligned}$	ACAE	ACBAE	ACTAE ACBTAE	$\begin{array}{\|c\|} \hline \text { PCTA } \\ \text { PCTBA } \\ \text { PCTGA } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { PCTTA } \\ \text { PCTBTA } \end{array}$	PCTS					
								\%	$\begin{array}{\|l\|} \hline \text { PYAA:87 } \\ \text { PYBA:28 } \\ \text { PYDA:45 } \end{array}$	$8 \text { PYTA:80 }$	$0 \begin{aligned} & 0 \text { ENBT:80 } \\ & \hline \text { ENBT: } 29 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { ACA:93 } \\ \text { ACBA:25 } \\ \text { ACDA:43 } \\ \hline \end{array}$	$\begin{array}{c\|c} & \text { ACTA:79 } \\ \hline \text { ACBTA:32 } \end{array}$	ACAE: 2	ACBAE	$4 \text { ACCTAE: }{ }^{\text {ACB7 }: 25}$	$\begin{aligned} & \text { PCTA:90 } \\ & \text { PCTBA:35 } \\ & \text { PCTGA:33 } \end{aligned}$	$\begin{aligned} & \text { P PCTTA:86 } \\ & \hline \end{aligned}$	PCTSP
Tensile Strength			K-7113	MPa $\left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\}$	$\begin{gathered} 62 \\ \{630\} \end{gathered}$	$\begin{gathered} 52 \\ \{530\} \end{gathered}$	$\begin{gathered} 63 \\ \{640\} \end{gathered}$	$\begin{gathered} 75 \\ \{760\} \end{gathered}$	$\begin{gathered} 75 \\ \{760\} \end{gathered}$	$\begin{gathered} 67 \\ \{682\} \end{gathered}$	$\begin{gathered} \hline 76 \\ \{774\} \end{gathered}$	$\begin{gathered} 73 \\ \{754\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$				
${ }_{4}^{4}$ Elongation*			113	\%	15		50	2~7	5	4	5	5	83	83	83				
景Bending Strength			k-7203	$\begin{gathered} \mathrm{MPa} \\ \left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\} \end{gathered}$	$\begin{gathered} 83 \\ \{850\} \end{gathered}$	$\begin{gathered} 71 \\ \{730\} \end{gathered}$	$\begin{gathered} 98 \\ \{1000\} \end{gathered}$	$\begin{gathered} 117 \\ \{1200\} \end{gathered}$	$\begin{gathered} 106 \\ \{1080\} \end{gathered}$	111	$\begin{gathered} 125 \\ \{1274\} \end{gathered}$	$\begin{gathered} 122 \\ \{1244\} \end{gathered}$	$\begin{gathered} 90 \\ \{918\} \end{gathered}$	$\begin{gathered} 90 \\ \{918\} \end{gathered}$	$\begin{gathered} 93 \\ \{948\} \end{gathered}$				
. Fex Flexural Modulus			203	MPa	2.4×10^{3}	2.0×10^{3}	3.4×10^{3}	3.2×10^{3}	3.3×10^{3}	3400	3500	3300	2300	2300	2300				
	Compression Strength	Yield Point	K-7181	$\begin{gathered} \mathrm{MPa} \\ \left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\} \end{gathered}$		$\begin{gathered} 60 \\ \{610\} \end{gathered}$	$\begin{gathered} 83 \\ \{850\} \end{gathered}$	$\begin{gathered} 124 \\ \{1270\} \end{gathered}$		$\begin{gathered} 120 \\ \{1200\} \end{gathered}$			$\begin{gathered} 78 \\ \{795\} \end{gathered}$	$\begin{gathered} 78 \\ \{795\} \end{gathered}$					
	Izod Impact Str	ength	K-7110	$\mathrm{kJ} / \mathrm{m}^{2}$	10		2.9	2.7		2.5	1.5	2	15	15					
	Rockwell Harchess	M Scale			59	46		100	100	100	99	97	67	70					
	Continuous Use			${ }^{\circ} \mathrm{C}$	-15~55	-15~55	$-30 \sim 60$	-30~80	-30~80	-30~70	-30~70	-30~60	-30~100	-30~100	-30~100				
	Oifition ena Uluder lax 0.45 MPa			K-7191	${ }^{\circ} \mathrm{C}$	70	69		100	85	90	110	92	135	135	135			
				K-7140	${ }^{\circ} \mathrm{C}^{-1}$	6.8×10^{-5}	7.5×10^{-5}	7.0x10.5	7.0×10^{-5}	5.9×10^{-5}	7.0x10.5	7.0×10^{-5}	7.0x10.5	6.5×10^{-5}	5.2×10^{-5}	6.5×10^{-5}			
Til Thermal Conductivity				W/m			0.16	0.21		0.21	0.21		0.24						
Specific Heat				$\mathrm{J} / \mathrm{g} \cdot \mathrm{K}$	1.3	1.35	1.12	1.46	1.46	1.46	1.47	1.5	1.3	1.2					
Surface Resistivity			K-6911	Ω	$>10^{10}$	$10^{6} \sim 10^{8}$	$10^{7} \sim 10^{8}$	$>10^{15}$	$10^{6} \sim 10^{8}$	$>10^{15}$	$>10^{16}$	$10^{7} \sim 10^{8}$	$>2.0 \times 10^{16}$	$10^{6} \sim 10^{8}$	>2.0×10				
Specific Volume Resistivity			K-6911	$\Omega \cdot \mathrm{cm}$	$>10^{11}$	$>10^{17}$		$>10^{15}$	$>10^{17}$	$>10^{15}$	$>10^{15}$	$>10^{15}$	$>10^{17}$	$>10^{17}$	$>10{ }^{17}$				
Insulation Breakdown Votage			K-6911	kV/mm				20		20	20		20	-	20				
Dielectric Constant $10^{\circ} \mathrm{Hz}$			K-6911		3.2			3.2	2.9	3.1	4		3	3	3				
픂 Dissipation Factor 10 $0^{\text {¢Hz }}$			K-6911	-		-	-	0.06	0.032	0.06	0.06	-	0.009	0.06	-				
Specific Gravity				-	1.27	1.27	1.4	1.2	1.2	1.2	1.19	1.19	1.2	1.2	1.2				
Water Absorption Ratio			K-7209	\%			0.03	0.4	0.18	0.4	0.3	0.4	0.24	0.15					
Flame Resistance							Ssitutarasiling	\times	\times					-					
흥 Chemical Resistance		0il			\bigcirc	\times	\bigcirc												
		Acid			\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$x \sim \Delta$	\triangle	\times	\triangle				
		Alkali			$\times \sim \Delta$	$\times \sim \Delta$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times				
		Oganics Suvent	-		\times	\times	$x \sim \Delta$	$x \sim \Delta$	$x \sim \Delta$	$\times \sim \triangle$	$\times \sim \Delta$	$\times \sim \triangle$	\times	\times	\times				

*Values of elongation of polycarbonate and PET are \% values measured by JIS $\mathrm{K}-7162-11 / 50$.

Characteristics of Acrylic Cast Plates and Extruded Plate

As for Acrylic Plates, cast plates made by cell-cast method and extruded plates are available.
Cast plates have better heat resistance and stronger mechanical strength than extruded plates. Extruded plates are more inexpensive than cast plates.

When exrucued plates have contact with vaporizing iqquiut such as methanol and methylene chloride after they are therma-processed such as laser machining, they may have cracks. Also, extruded plates may have deflection at high temperature.

