Engineered Plastics Guide

Line-ups and Characteristics of Engineered Plastics

Page | Material | Color Example | Grade Code | Grade | Properties | Features
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Material</td>
<td>Color Example</td>
<td>Grade Code</td>
<td>Grade</td>
<td>Properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resistance to Heat, Abrasion and Radiation: Excellent</td>
</tr>
<tr>
<td>P891</td>
<td>PEEK</td>
<td>Yellow Transparent</td>
<td>P891</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | | | | Superior in abrasion resistance and sliding property.

Reference Values of Specific Volume Resistivity and Heat Resistance

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Specific Volume Resistivity (Ω.cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C</td>
<td>10³</td>
</tr>
<tr>
<td>-20°C</td>
<td>10³</td>
</tr>
<tr>
<td>0°C</td>
<td>10³</td>
</tr>
<tr>
<td>20°C</td>
<td>10³</td>
</tr>
<tr>
<td>40°C</td>
<td>10³</td>
</tr>
<tr>
<td>60°C</td>
<td>10³</td>
</tr>
<tr>
<td>80°C</td>
<td>10³</td>
</tr>
<tr>
<td>100°C</td>
<td>10³</td>
</tr>
<tr>
<td>120°C</td>
<td>10³</td>
</tr>
<tr>
<td>150°C</td>
<td>10³</td>
</tr>
</tbody>
</table>

About Shape / Dimension Change of Resin

Resin, unlike metals, can be easily distorted, expanded or contracted due to temperature and humidity. See note below for designing.

Dimension Change

- **Arrival** Molding and this shape will change. These shapes cause more distortion. It is recommended to retreat the shape to your tools below.

Notes

- If you are using a shrinkage or expansion test, the following formulas can be used to calculate the change in dimensions.

Shape Distortion

1. **Shape Change**: The change of the shape in the test or in the actual product. This formula is used to determine the amount of shrinkage or expansion that occurs when the shape changes. For example, if the shape changes from 100mm to 105mm, the change is 5mm.

Notes

- If you are using a shrinkage or expansion test, the following formulas can be used to calculate the change in dimensions.

Conclusion

Colored parts can be fixed to a certain extent by applying weight on them for 24 hours or so.

References

- [Engineered Plastics Guide](Reference Values of Specific Volume Resistivity and Heat Resistance)
- [Dimension Change](About Shape / Dimension Change of Resin)