Varieties of Surface Roughness

The definitions and notation are prescribed for the parameters which indicate the surface roughness of an industrial product, including the arithmetic average roughness (Ra), maximum height (Ry), 10-spot average roughness (Rz), average concave-to-convex distance (Sm), average distance between local peaks (S), and load length rate (tp). Surface roughness is the arithmetic average of values at randomly selected spots on the surface of an object.
[Center-line average roughness (Ra75) is defined in the supplements to JIS B 0031 and JIS B 0601.]

Typical calculations of surface roughness

Arithmetical average roughness (Ra)
A portion stretching over a reference length in the direction in which the average line
extends is cut out from the roughness curve. This portion is presented in a new graph with
the X axis extending in the same direction as the average line and the Y axis representing
the magnitude. When the roughness curve is represented by $\mathrm{y}=\mathrm{f}(\mathrm{x})$, Ra is the value in
microns $(\mu \mathrm{m})$ found from the formula shown at right.
Maximum height (Ry)
A portion stretching over a reference length in the direction in which the
average line extends is cut out from the roughness curve. The gap between
the peak line and valley line in this portion is measured in the direction of
the magnitude axis, and this value is indicated in microns ($\mu \mathrm{m}$).
Note: When finding Ry, the reference length is selected from a portion which contans no
abnormally high peaks or abnormally low valleys (locations which are likely flaws).
A portion stretching over a reference length in the direction in
which the average line extends is cut out from the roughness curve.
Within this portion, the average absolute value of the height (Yp)
of the five highest peaks as measured from the average line and the
average absolute value of the height (Yv) of the five lowest valleys
are added together. Rz is this sum, in microns ($\mu \mathrm{m}$).

Reference: Relationship Between Arithmetic Average Roughness (Ra) and Previous Notation

Arithmetical average roughness Ra			Max. height Ry	Ten-spot average roughness Rz	Ry-Rz reference length	Conventional
Standard sequence	$\substack{\text { Cutort value } \\ \lambda . c(m m)}$	Drawing indication of surface texture	Standard sequence		$\ell(\mathrm{mm})$	
$\begin{aligned} & 0.012 \mathrm{a} \\ & 0.025 \mathrm{a} \\ & 0.05 \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & 0.2 \end{aligned}$	0.25	$0.012 / \sim 0.2 /$	0.05 s	0.05 z	0.08	\cdots
			0.1 s	0.1 z		
			0.2 s	0.2 z	0.25	
	0.8		0.4 s	0.4 z	0.25	
				0.8 z	0.8	
0.4 a		$0.4 \sim 1.6$				
0.8 a			3.2 s	3.2 z		\cdots
1.6 a						
3.2 a	2.5	$\stackrel{3.2}{\square} \sim \sqrt[6.3]{\square}$	12.5 s	12.5 z	2.5	∇
6.3 a				25 z		
12.5 a	8	$\sqrt[12.5]{\square} \sim 25$	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ 100 \end{array}$	8	∇
25 a						
50 a		$50 / \sim 100 /$	200	200		\sim
100 a	-				-	

※The relationships among the three varieties shown here are not precise, and are presented for convenience only.
※Ra: The evaluation lengths of Ry and Rz are the cut-off values and the reference length each multiplied by five.

