[MATERIALS] HARDENING AND HARDNESS TESTS ## **Heat Treatment for Steel Materials** | Name | Vickers hardness
(HV) | Hardening depth
(mm) | Strain | Applicable materials | Typical
materials | Remarks | | |------------------------|------------------------------|-------------------------|---|---------------------------------|--|--|--| | Through
hardening | Max. 750 | All | Varies
according to
the material. | High-C steel
C>0.45% | SKS3
SKS21
SUJ2
SKH51
SKS93
SK4
S45C | Should not be used for long parts such as spindles or for precision parts. | | | Carburizing | Max. 750 | Standard 0.5
Max. 2 | Medium | Low-C steel
C<0.3% | SCM415
SNCM220 | Localized hardening is possible. Hardening depth must be specified on drawings. Suitable for precision parts | | | Induction
hardening | Max. 500 | 1~2 | Large | Medium-C
steel
C 0.3~0.5% | S45C | Localized hardening is possible. Expensive in small volumes Good fatigue resistance | | | Nitriding | 900~1000 | 0.003~0.008 | Small | Nitriding
steel | SACM645 | Highest hardening hardness Suitable for precision parts Suitable for sliding bearing spindles | | | Tufftride® | Carbon steel 500
SUS 1000 | 0.01~0.02 | Small | Steel
materials | S45C
SCM415
SK3
Stainless
steel | Good fatigue resistance and wear resistance Same corrosion resistance as zinc plating Not suitable for precision parts because polishing following the heat treatment is not possible. Suitable for oil-free lubrication | | | Bluing | | | | Wire rod | SWP—B | Low temperature annealing Enhances elasticity by removing internal stress during forming | | ## **Hardness Test Methods and Applicable Parts** | Test method | Principle | Applicable heat-treated parts | Characteristics | Remarks | |----------------------|--|---|---|------------| | 1. Brinell hardness | A ball indenter (steel or carbide alloy) is
used to indent the test surface. Hardness
is given by dividing the test load by the
surface area, which was found from the
diameter of the indentation. | Annealed parts Normalized parts Anchored materials | Suitable for uneven materials
and forged products because the
indent is large. Not suitable for small or thin
specimens | JIS Z 2243 | | 2. Rockwell hardness | The standard or test load is
applied via a diamond or ball
indenter, and the hardness value
is read from the tester. | Hardened parts and tempered parts Carburized surfaces Nitrided surfaces Thin sheets of copper, brass, bronze, or similar materials #Redowell Csael (HRC) is not suitable for materials such as narrow pins and thin sheets. | Hardness value can be obtained quickly. Suitable as an intermediate test of actual products Gaution is required because there are many types. Here are many types of Rockwell hardness testers, including the Asciel HRAI, B scale (HRB), C scale (HRC), and D scale (HRD). | JIS Z 2245 | | 3. Shore hardness | The specimen is set on a table
and a hammer is dropped
from a set height. Hardness is
determined based on how high
the hammer bounces. | Hardened parts and tempered
parts Nitrided parts Large parts treated by carburizing
or similar process | Extremely easy to operate. Data can be obtained quickly. Suitable for large parts Because indent is small and not noticeable, this test is suitable for actual products. Compact and light-weight. Portable. | JIS Z 2246 | | 4. Vickers hardness | A diamond square pyramid indenter with a
vertex angle of 136 degrees is used to create
an indentation in the test surface. The hardress
value is found from the test load and the surface
area of the indent, computed from the length of
the diagonal lines of the indent. (Conversion is
performed automatically.) | Materials with a thin hardened
layer created by induction
hardening, carburizing, nitriding,
electroplating, ceramic coating,
etc. Hardened layer depth in
carburized and nitrided parts | Suitable for small and thin specimens Because the indenter is diamond, this test can be used with materials of any hardness. | JIS Z 2244 |